

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Hall of Fame

This library is only made possible because of @all-contributors, thank you ♥️ ♥️ ♥️

[image: https://sourcerer.io/fame/lgvaz/airctic/icevision/images/0] [https://sourcerer.io/fame/lgvaz/airctic/icevision/links/0][image: https://sourcerer.io/fame/lgvaz/airctic/icevision/images/1] [https://sourcerer.io/fame/lgvaz/airctic/icevision/links/1][image: https://sourcerer.io/fame/lgvaz/airctic/icevision/images/2] [https://sourcerer.io/fame/lgvaz/airctic/icevision/links/2][image: https://sourcerer.io/fame/lgvaz/airctic/icevision/images/3] [https://sourcerer.io/fame/lgvaz/airctic/icevision/links/3][image: https://sourcerer.io/fame/lgvaz/airctic/icevision/images/4] [https://sourcerer.io/fame/lgvaz/airctic/icevision/links/4][image: https://sourcerer.io/fame/lgvaz/airctic/icevision/images/5] [https://sourcerer.io/fame/lgvaz/airctic/icevision/links/5][image: https://sourcerer.io/fame/lgvaz/airctic/icevision/images/6] [https://sourcerer.io/fame/lgvaz/airctic/icevision/links/6][image: https://sourcerer.io/fame/lgvaz/airctic/icevision/images/7] [https://sourcerer.io/fame/lgvaz/airctic/icevision/links/7]

Changing the colors

If you install the documentation on your local machine, you can pick the colors of your choice.
The colors can be set from mkdocs.yml located in the docs/ folder

Color scheme

Our documenation supports two color schemes: a light mode, which is just
called default, and a dark mode, which is called slate. The color scheme
can be set from mkdocs.yml:

theme:
 palette:
 scheme: default

:material-cursor-default-click-outline: click on a tile to change the color
scheme:

 default
 slate

Primary color

The primary color is used for the header, the sidebar, text links and several
other components. In order to change the primary color, set the following value
in mkdocs.yml to a valid color name:

theme:
 palette:
 primary: indigo

:material-cursor-default-click-outline: click on a tile to change the primary
color:

 red
 pink
 purple
 deep purple
 indigo
 blue
 light blue
 cyan
 teal
 green
 light green
 lime
 yellow
 amber
 orange
 deep orange
 brown
 grey
 blue grey
 black
 white

Accent color

The accent color is used to denote elements that can be interacted with, e.g.
hovered links, buttons and scrollbars. It can be changed in mkdocs.yml by
chosing a valid color name:

theme:
 palette:
 accent: indigo

:material-cursor-default-click-outline: click on a tile to change the accent
color:

 red
 pink
 purple
 deep purple
 indigo
 blue
 light blue
 cyan
 teal
 green
 light green
 lime
 yellow
 amber
 orange
 deep orange

!!! warning “Accessibility – not all color combinations work well”

With __2__ (color schemes) __x 21__ (primary colors) __x 17__ (accent color)
= __714__ combinations, it's impossible to ensure that all configurations
provide a good user experience (e.g. _yellow on light background_), so make
sure that the color combination of your choosing provides enough contrast
and tweak CSS variables where necessary.

Deployment

We offer some easy-to-use options to deploy models trained using IceVision framework. Please, check out the deployment [https://airctic.com/deployment/] section in our documentation or the icevision-gradio [https://github.com/airctic/icevision-gradio] repository.

We are using gradio [https://www.gradio.app/] because it is a powerful yet to easy-to-use deployment option.

Where can I get some help?

	If you find a bug, or you would like to suggest some new features, please file an issue here [https://github.com/airctic/icevision/issues]

	If you need any assistance during your learning journey, feel free to join our forum [https://discord.gg/JDBeZYK].

How to install icevision?

To install the IceVision package as well as all its dependencies, choose one of the 2 options:

Installing the IceVision lastest version

pip install git+git://github.com/airctic/icevision.git#egg=icevision[all] --upgrade

Install the IceVision lastest version from Pypi repository:

pip install icevision[all]

For more options, and more in-depth explanation on how to install IceVision, please check out our Installation Guide [https://airctic.github.io/icevision/install/]

How to create an EffecientDet Model?

tf_efficientdet_lite0 Example: Source Code [https://airctic.github.io/icevision/examples/efficientdet_pets_exp/]

model = efficientdet.model(
 model_name="tf_efficientdet_lite0", num_classes=len(class_map), img_size=size
)

efficientdet_d0 Example:

model = efficientdet.model(
 model_name="efficientdet_d0", num_classes=len(class_map), img_size=size
)

For more information checkout the EffecientDet Model [https://airctic.github.io/icevision/model_efficientdet/] as well as the EffecientDet Backbone [https://airctic.github.io/icevision/backbones_overview/] documents.

How to create a Faster RCNN Model?

fasterrcnn_resnet50_fpn Example: Source Code [https://airctic.github.io/icevision/examples/backbones_faster_rcnn/]

- Using the default argument

model = faster_rcnn.model(num_classes=len(class_map))

Using the explicit backbone definition

backbone = backbones.resnet_fpn.resnet50(pretrained=True) # Default
model = faster_rcnn.model(
 backbone=backbone, num_classes=len(class_map)
)

For more information checkout the Faster RCNN Model [https://airctic.github.io/icevision/model_faster_rcnn/] as well as the Faster RCNN Backbone [https://airctic.github.io/icevision/backbones_overview/] documents/

How to create a Mask RCNN Model?

- Using the default argument

model = mask_rcnn.model(num_classes=len(class_map))

Using the explicit backbone definition

backbone = backbones.resnet_fpn.resnet50(pretrained=True) # Default
model = mask_rcnn.model(
 backbone=backbone, num_classes=len(class_map)
)

For more information checkout the Faster RCNN Model [https://airctic.github.io/icevision/model_faster_rcnn/] as well as the Faster RCNN Backbone [https://airctic.github.io/icevision/backbones_overview/] documents.

How to use EffecientDet Backbones?

EffecientDet backbones are passed as string argument to the effecientdet model function:

model = efficientdet.model(
 model_name="tf_efficientdet_lite0", num_classes=len(class_map), img_size=size
)

For more information checkout the EffecientDet Backbone [https://airctic.github.io/icevision/backbones_overview/] document.

How to use Faster RCNN Backbones?

Faster RCNN backbones are passed a model object argument to the Faster RCNN model function:

backbone = backbones.resnet_fpn.resnet18(pretrained=True)
model = faster_rcnn.model(
 backbone=backbone, num_classes=len(class_map)
)

For more information checkout the Faster RCNN Backbone [https://airctic.github.io/icevision/backbones_overview/] document.

How to use Mask RCNN Backbones?

Mask RCNN backbones are passed a model object argument to the Mask RCNN model function:

backbone = backbones.resnet_fpn.resnet34(pretrained=True)
model = mask_rcnn.model(
 backbone=backbone, num_classes=len(class_map)
)

For more information checkout the Faster RCNN Backbone [https://airctic.github.io/icevision/backbones_overview/] document.

How to predict (infer) a single image?

This is a quick example using the PETS dataset:

Imports
from icevision.all import *

Maps from IDs to class names. `print(class_map)` for all available classes
class_map = datasets.pets.class_map()

Try experimenting with new images, be sure to take one of the breeds from `class_map`
IMAGE_URL = "https://petcaramelo.com/wp-content/uploads/2018/06/beagle-cachorro.jpg"
IMG_PATH = "tmp.jpg"
Model trained on `Tutorials->Getting Started`
WEIGHTS_URL = "https://github.com/airctic/model_zoo/releases/download/pets_faster_resnet50fpn/pets_faster_resnetfpn50.zip"

Download and open image, optionally show it
download_url(IMAGE_URL, IMG_PATH)
img = open_img(IMG_PATH)
show_img(img, show=True)

The model was trained with normalized images, it's necessary to do the same in inference
tfms = tfms.A.Adapter([tfms.A.Normalize()])

Whenever you have images in memory (numpy arrays) you can use `Dataset.from_images`
infer_ds = Dataset.from_images([img], tfms)

Create the same model used in training and load the weights
`map_location` will put the model on cpu, optionally move to gpu if necessary
model = faster_rcnn.model(num_classes=len(class_map))
state_dict = torch.hub.load_state_dict_from_url(
 WEIGHTS_URL, map_location=torch.device("cpu")
)
model.load_state_dict(state_dict)

For any model, the prediction steps are always the same
First call `build_infer_batch` and then `predict`
batch, samples = faster_rcnn.build_infer_batch(infer_ds)
preds = faster_rcnn.predict(model=model, batch=batch)

If instead you want to predict in smaller batches, use `infer_dataloader`
infer_dl = faster_rcnn.infer_dl(infer_ds, batch_size=1)
samples, preds = faster_rcnn.predict_dl(model=model, infer_dl=infer_dl)

Show preds by grabbing the images from `samples`
imgs = [sample["img"] for sample in samples]
show_preds(
 imgs=imgs,
 preds=preds,
 class_map=class_map,
 denormalize_fn=denormalize_imagenet,
 show=True,
)

How to save trained weights in Google Colab?

In the following example, we show how to save trained weight using an EffecientDet model. The latter can be replaced by any model supported by IceVision

Check out the Train a Dataset Notebook [https://airctic.github.io/icevision/how_train_dataset/] to get familiar with all the steps from the training a dataset to saving the trained weights.

Model
model = efficientdet.model(
 model_name="tf_efficientdet_lite0", num_classes=len(class_map), img_size=size
)
Train the model using either Fastai Learner of Pytorch-Lightning Trainer

Saving a Model on Google Drive
from google.colab import drive
drive.mount('/content/gdrive', force_remount=True)
root_dir = Path('/content/gdrive/My Drive/')

torch.save(model.state_dict(), root_dir/'icevision/models/fridge/fridge_tf_efficientdet_lite0.pth')

How to load pretrained weights?

In this example, we show how to create a Faster RCNN model, and load pretrained weight that were previously obtained during the training of the PETS dataset as shown in the Getting Started Notebook [https://airctic.github.io/icevision/getting_started/]

Maps IDs to class names.
class_map = datasets.pets.class_map()

Model trained in `Tutorials->Getting Started`
WEIGHTS_URL = "https://github.com/airctic/model_zoo/releases/download/pets_faster_resnet50fpn/pets_faster_resnetfpn50.zip"

Create the same model used in training and load the weights
`map_location` will put the model on cpu, optionally move to gpu if necessary
model = faster_rcnn.model(num_classes=len(class_map))
state_dict = torch.hub.load_state_dict_from_url(
 WEIGHTS_URL, map_location=torch.device("cpu")
)
model.load_state_dict(state_dict)

How to contribute?

We are both a welcoming and an open community. We warmly invite you to join us either as a user or a community contributor. We will be happy to hear from you.

To contribute, please follow the Contributing Guide [https://airctic.github.io/icevision/contributing/].

 !!! danger “Important”We currently only support Linux/MacOS installations

A- Installation using pip

Option 1: Installing from pypi repository [Stable Version]

To install icevision package together with all dependencies:


```console
$ pip install icevision[all]
```


Option 2: Installing an editable package locally [For Developers]

!!! info “Note”This method is used by developers who are usually either:

- actively contributing to `icevision` project by adding new features or fixing bugs, or

- creating their own extensions, and making sure that their source code stay in sync with the `icevision` latest version.

Then, clone the repo and install the package:


```console
$ git clone --depth=1 https://github.com/airctic/icevision.git
$ cd icevision
$ pip install -e ".[all,dev]"
```


Option 3: Installing a non-editable package from GitHub:

To install the icevision package from its GitHub repo, run the command here below. This option can be used in Google Colab,
for example, where you might install the icevision latest version (from the master branch)


```console
$ pip install git+git://github.com/airctic/icevision.git#egg=icevision[all] --upgrade
```


B- Installation using conda

Creating a conda environment is considered as a best practice because it avoids polluting the default (base) environment, and reduces dependencies conflicts. Use the following command in order to create a conda environment called ice


```console
$ conda create -n icevision python=3.8 anaconda
$ conda activate icevision
$ pip install icevision[all]
```


C- Fixing the Error: Failed building wheel for pycocotools

If you encounter the Failed building wheel for pycocotools error (see screenshoot here below), you can easily fix it by installing gcc from your linux terminal as shown in the following steps:


```console
$ sudo apt update
$ sudo apt install gcc
```

[image: images/pycoco-installation-issue.png]image

!!! info “Note”
You can check out the following blog post: 3 ways to pip install a package [https://ai-fast-track.github.io/blog/python/2020/03/17/how-to-pip-install-package.html] for more a detailed explantion on how to choose the most convenient installation option for you.

IceVision Documentation

The source for IceVision documentation is in the docs/ folder.
Our documentation uses extended Markdown, as implemented by MkDocs [http://mkdocs.org].

Building the documentation

	Locally install the package as described here [https://airctic.com/install/#option-2-installing-an-editable-package-locally-for-developers]

	From the root directory, cd into the docs/ folder and run:

	poetry run python autogen.py

	poetry run mkdocs serve # Starts a local webserver: localhost:8000 [http://localhost:8000]

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

